Redis基础总览

  • Redis全景图

avatar

  • Redis问题画像图

avatar

  • Redis功能模块图

avatar

Redis数据结构

Redis在接收到一个键值对操作后,能以微秒级别的速度找到数据,并快速完成操作。主要原因是:

  1. 它是内存数据库,所有操作都在内存上完成,内存的访问速度本身就很快。

  2. 要归功于它的数据结构。这是因为,键值对是按一定的数据结构来组织的,操作键值对最终就是对数据结构进行增删改查操作,所以高效的数据结构是 Redis 快速处理数据的基础。

我们一般说的Redis数据结构有五种:String(字符串)、List(列表)、Hash(哈希)、Set(集合)和 Sorted Set(有序集合)。这些只是 Redis 键值对中值的数据类型,也就是数据的保存形式。这里,我们说的数据结构,是要去看看它们的底层实现。

底层数据结构

简单来说,底层数据结构一共有 6 种,分别是简单动态字符串、双向链表、压缩列表、哈希表、跳表和整数数组。它们和数据类型的对应关系如下图所示:

avatar

可以看到,String 类型的底层实现只有一种数据结构,也就是简单动态字符串。而 List、Hash、Set 和 Sorted Set 这四种数据类型,都有两种底层实现结构。通常情况下,我们会把这四种类型称为集合类型,它们的特点是一个键对应了一个集合的数据。

键和值的组织结构

为了实现从键到值的快速访问,Redis 使用了一个哈希表来保存所有键值对。一个哈希表,其实就是一个数组,数组的每个元素称为一个哈希桶。所以,我们常说,一个哈希表是由多个哈希桶组成的,每个哈希桶中保存了键值对数据。哈希桶中的元素保存的并不是值本身,而是指向具体值的指针。这也就是说,不管值是 String,还是集合类型,哈希桶中的元素都是指向它们的指针。

因为这个哈希表保存了所有的键值对,所以,我也把它称为全局哈希表。哈希表的最大好处很明显,就是让我们可以用 O(1) 的时间复杂度来快速查找到键值对——我们只需要计算键的哈希值,就可以知道它所对应的哈希桶位置,然后就可以访问相应的 entry 元素。

哈希表的冲突问题 和 rehash

当你往哈希表中写入更多数据时,哈希冲突是不可避免的问题。这里的哈希冲突,也就是指,两个 key 的哈希值和哈希桶计算对应关系时,正好落在了同一个哈希桶中。Redis 解决哈希冲突的方式,就是链式哈希。链式哈希也很容易理解,就是指同一个哈希桶中的多个元素用一个链表来保存,它们之间依次用指针连接。

这里依然存在一个问题,哈希冲突链上的元素只能通过指针逐一查找再操作。如果哈希表里写入的数据越来越多,哈希冲突可能也会越来越多,这就会导致某些哈希冲突链过长,进而导致这个链上的元素查找耗时长,效率降低。 所以,Redis 会对哈希表做 rehash 操作。rehash 也就是增加现有的哈希桶数量,让逐渐增多的 entry 元素能在更多的桶之间分散保存,减少单个桶中的元素数量,从而减少单个桶中的冲突。具体做法就是:

为了使 rehash 操作更高效,Redis 默认使用了两个全局哈希表:哈希表 1 和哈希表 2。一开始,当你刚插入数据时,默认使用哈希表 1,此时的哈希表 2 并没有被分配空间。随着数据逐步增多,Redis 开始执行 rehash,这个过程分为三步:

  1. 给哈希表 2 分配更大的空间,例如是当前哈希表 1 大小的两倍;
  2. 把哈希表 1 中的数据重新映射并拷贝到哈希表 2 中;
  3. 释放哈希表 1 的空间。

这个过程看似简单,但是第二步涉及大量的数据拷贝,如果一次性把哈希表 1 中的数据都迁移完,会造成 Redis 线程阻塞,无法服务其他请求。此时,Redis 就无法快速访问数据了。

渐进式 rehash

简单来说就是在第二步拷贝数据时,Redis 仍然正常处理客户端请求,每处理一个请求时,从哈希表 1 中的第一个索引位置开始,顺带着将这个索引位置上的所有 entries 拷贝到哈希表 2 中;等处理下一个请求时,再顺带拷贝哈希表 1 中的下一个索引位置的entries。

这样就巧妙地把一次性大量拷贝的开销,分摊到了多次处理请求的过程中,避免了耗时操作,保证了数据的快速访问。

渐进式 rehash 执行期间的哈希表操作

因为在进行渐进式 rehash 的过程中, 字典会同时使用 1 和 2 两个哈希表, 所以在渐进式 rehash 进行期间, 字典的删除(delete)、查找(find)、更新(update)等操作会在两个哈希表上进行: 比如说, 要在字典里面查找一个键的话, 程序会先在 1 里面进行查找, 如果没找到的话, 就会继续到 2 里面进行查找, 诸如此类。

另外, 在渐进式 rehash 执行期间, 新添加到字典的键值对一律会被保存到 2 里面, 而 1 则不再进行任何添加操作: 这一措施保证了 1 包含的键值对数量会只减不增, 并随着 rehash 操作的执行而最终变成空表。

渐进式rehash带来的问题

渐进式rehash避免了redis阻塞,可以说非常完美,但是由于在rehash时,需要分配一个新的hash表,在rehash期间,同时有两个hash表在使用,会使得redis内存使用量瞬间突增,在Redis 满容状态下由于Rehash会导致大量Key驱逐。

采用渐进式 hash 时,如果实例暂时没有收到新请求,是不是就不做 rehash 了?

其实不是的。Redis 会执行定时任务,定时任务中就包含了 rehash 操作。所谓的定时任务,就是按照一定频率(例如每 100ms/ 次)执行的任务。在 rehash 被触发后,即使没有收到新请求,Redis 也会定时执行一次 rehash 操作,而且,每次执行时长不会超过 1ms,以免对其他任务造成影响。

Redis 什么时候做 rehash?

Redis 会使用装载因子(load factor)来判断是否需要做 rehash。装载因子的计算方式是,哈希表中所有 entry 的个数除以哈希表的哈希桶个数。Redis 会根据装载因子的两种情况,来触发 rehash 操作:

在第一种情况下,如果装载因子等于 1,同时我们假设,所有键值对是平均分布在哈希表的各个桶中的,那么,此时,哈希表可以不用链式哈希,因为一个哈希桶正好保存了一个键值对。

但是,如果此时再有新的数据写入,哈希表就要使用链式哈希了,这会对查询性能产生影响。在进行 RDB 生成和 AOF 重写时,哈希表的 rehash 是被禁止的,这是为了避免对RDB 和 AOF 重写造成影响。如果此时,Redis 没有在生成 RDB 和重写 AOF,那么,就可以进行 rehash。否则的话,再有数据写入时,哈希表就要开始使用查询较慢的链式哈希了。

在第二种情况下,也就是装载因子大于等于 5 时,就表明当前保存的数据量已经远远大于哈希桶的个数,哈希桶里会有大量的链式哈希存在,性能会受到严重影响,此时,就立马开始做 rehash。

刚刚说的是触发 rehash 的情况,如果装载因子小于 1,或者装载因子大于 1 但是小于 5,同时哈希表暂时不被允许进行 rehash(例如,实例正在生成 RDB 或者重写 AOF),此时,哈希表是不会进行 rehash 操作的。

集合数据操作效率

到这里,应该就能理解,Redis 的键和值是怎么通过哈希表组织的了。对于String 类型来说,找到哈希桶就能直接增删改查了,所以,哈希表的 O(1) 操作复杂度也就是它的复杂度了。

和 String 类型不同,一个集合类型的值,第一步是通过全局哈希表找到对应的哈希桶位置,第二步是在集合中再增删改查。

集合类型底层数据结构

集合类型的底层数据结构主要有 5 种:整数数组、双向链表、哈希表、压缩列表和跳表。

压缩列表:压缩列表实际上类似于一个数组,数组中的每一个元素都对应保存一个数据。和数组不同的是,压缩列表在表头有三个字段 zlbytes、zltail 和 zllen,分别表示列表长度、列表尾的偏移量和列表中的 entry 个数;压缩列表在表尾还有一个zlend,表示列表结束。

在压缩列表中,如果我们要查找定位第一个元素和最后一个元素,可以通过表头三个字段的长度直接定位,复杂度是 O(1)。而查找其他元素时,就没有这么高效了,只能逐个查找,此时的复杂度就是 O(N) 了。

跳表:有序链表只能逐一查找元素,导致操作起来非常缓慢,于是就出现了跳表。具体来说,跳表在链表的基础上,增加了多级索引,通过索引位置的几个跳转,实现数据的快速定位。查找过程就是在多级索引上跳来跳去,最后定位到元素。这也正好符合“跳”表的叫法。当数据量很大时,跳表的查找复杂度就是 O(logN)。

数据结构的时间复杂度:

avatar

小结

Redis 之所以能快速操作键值对,一方面是因为 O(1) 复杂度的哈希表被广泛使用,包括String、Hash 和 Set,它们的操作复杂度基本由哈希表决定,另一方面,Sorted Set 也采用了 O(logN) 复杂度的跳表。不过,集合类型的范围操作,因为要遍历底层数据结构,复杂度通常是 O(N)。这里,我的建议是:用其他命令来替代,例如可以用 SCAN 来代替,避免在 Redis 内部产生费时的全集合遍历操作。

当然,我们不能忘了复杂度较高的 List 类型,它的两种底层实现结构:双向链表和压缩列表的操作复杂度都是 O(N)。因此,我的建议是:因地制宜地使用 List 类型。例如,既然它的 POP/PUSH 效率很高(他们都保存了表头三个字段),那么就将它主要用于FIFO 队列场景,而不是作为一个可以随机读写的集合。

高性能IO模型

单线程Redis

我们通常说,Redis 是单线程,主要是指 Redis 的网络 IO和键值对读写是由一个线程来完成的,这也是 Redis 对外提供键值存储服务的主要流程。但 Redis 的其他功能,比如持久化、异步删除、集群数据同步等,其实是由额外的线程执行的。所以,严格来说,Redis 并不是单线程。

Redis 为什么用单线程?

要更好地理解 Redis 为什么用单线程,我们就要先了解多线程的开销。,通常情况下,在我们采用多线程后,如果没有良好的系统设计,系统中通常会存在被多线程同时访问的共享资源,比如一个共享的数据结构。当有多个线程要修改这个共享资源时,为了保证共享资源的正确性,就需要有额外的机制进行保证,而这个额外的机制,就会带来额外的开销。(比如Redis 有 List 的数据类型,并提供出队(LPOP)和入队(LPUSH)操作,如果多线程同时操作,队列长度的增减就会出现并发问题)。这就是多线程编程模式面临的共享资源的并发访问控制问题。

解决这个问题,如果没有精细的设计,比如说,只是简单地采用一个粗粒度互斥锁,就会出现不理想的结果,即使增加了线程,大部分线程也在等待获取访问共享资源的互斥锁,并行变串行采用多线程开发一般会引入同步原语来保护共享资源的并发访问,这也会降低系统代码的易调试性和可维护性。为了避免这些问题,Redis 直接采用了单线程模式。

单线程 Redis 为什么那么快?

通常来说,单线程的处理能力要比多线程差很多,但是 Redis 却能使用单线程模型达到每秒数十万级别的处理能力,这是为什么呢?一方面,Redis 的大部分操作在内存上完成,再加上它采用了高效的数据结构,例如哈希表和跳表,这是它实现高性能的一个重要原因。另一方面,就是 Redis 采用了多路复用机制,使其在网络 IO 操作中能并发处理大量的客户端请求,实现高吞吐率。

基本 IO 模型与阻塞点

以 Get 请求为例,Redis 为了处理一个 Get 请求,需要监听客户端请求(bind/listen),和客户端建立连接(accept),从 socket 中读取请求(recv),解析客户端发送请求(parse),根据请求类型读取键值数据(get),最后给客户端返回结果,即向 socket 中写回数据(send)。

在这里的网络 IO 操作中,有潜在的阻塞点,分别是 accept() 和 recv()。当 Redis监听到一个客户端有连接请求,但一直未能成功建立起连接时,会阻塞在 accept() 函数这里,导致其他客户端无法和 Redis 建立连接。类似的,当 Redis 通过 recv() 从一个客户端读取数据时,如果数据一直没有到达,Redis 也会一直阻塞在 recv()。这就导致 Redis 整个线程阻塞,无法处理其他客户端请求,效率很低。不过,幸运的是,socket 网络模型本身支持非阻塞模式。

基于多路复用的高性能 I/O 模型

Linux 中的 IO 多路复用机制是指一个线程处理多个 IO 流,就是我们经常听到的select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听套接字和已连接套接字。内核会一直监听这些套接字上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个IO 流的效果。(内核监听)模型图如下:

avatar

为了在请求到达时能通知到 Redis 线程,select/epoll 提供了基于事件的回调机制,即针对不同事件的发生,调用相应的处理函数。这些事件会被放进一个事件队列,Redis 单线程对该事件队列不断进行处理。这样一来,Redis 无需一直轮询是否有请求实际发生,这就可以避免造成 CPU 资源浪费。同时,Redis 在对事件队列中的事件进行处理时,会调用相应的处理函数,这就实现了基于事件的回调。因为 Redis 一直在对事件队列进行处理,所以能及时响应客户端请求,提升Redis 的响应性能。

小结

Redis 单线程是指它对网络 IO 和数据读写的操作采用了一个线程,而采用单线程的一个核心原因是避免多线程开发的并发控制问题。单线程的 Redis 也能获得高性能,跟多路复用的 IO 模型密切相关,因为这避免了 accept() 和 send()/recv() 潜在的网络 IO 操作阻塞点。

即便如此,单线程处理还是有瓶颈,我们思考Redis单线程处理IO请求性能瓶颈主要包括2个方面:

  1. 在客户端的并发量很大的情况下,单线程始终有它的瓶颈在。

  2. redis 线程是循环处理每个事件的。如果其中一个事件比较耗时,会影响后面事件的及时处理。

经典问题

Redis 在接收多个网络客户端发送的请求操作时,如果有一个客户端和 Redis 的网络连接断开了,Redis 会一直等待该客户端恢复连接吗?为什么?

Redis 不会等待客户端恢复连接。原因是,Redis 的网络连接是由操作系统进行处理的,操作系统内核负责监听网络连接套接字上的连接请求或数据请求,而 Redis 采用了 IO 多路复用机制 epoll,不会阻塞在某一个特定的套接字上。epoll 机制监测到套接字上有请求到达时,就会触发相应的事件,并把事件放到一个队列中,Redis 就会对这个事件队列中的事件进行处理。这样一来,Redis 只用查看和处理事件队列,就可以了。当客户端网络连接断开或恢复时,操作系统会进行处理,并且在客户端能再次发送请求时,把接收到的请求以事件形式通知 Redis。

AOF日志

Redis存在的一个问题,一旦服务器宕机,内存中的数据将全部丢失。

AOF 日志原理

AOF 日志与数据库的写前日志(Write Ahead Log, WAL)正好相反,它是写后日志,“写后”的意思是 Redis 是先执行命令,把数据写入内存。

传统数据库的日志,例如 redo log(重做日志),记录的是修改后的数据,而 AOF 里记录的是 Redis 收到的每一条命令,这些命令是以文本形式保存的。Redis 在向 AOF 里面记录日志的时候,并不会先去对这些命令进行语法检查。所以,如果先记日志再执行命令的话,日志中就有可能记录了错误的命令,Redis 在使用日志恢复数据时,就可能会出错。而写后日志这种方式,就是先让系统执行命令,只有命令能执行成功,才会被记录到日志中,否则,系统就会直接向客户端报错。所以,Redis 使用写后日志这一方式的一大好处是,可以避免出现记录错误命令的情况。

除此之外,AOF 还有一个好处:它是在命令执行后才记录日志,所以不会阻塞当前的写操作。

不过,AOF 也有两个潜在的风险:

  1. 如果刚执行完一个命令,还没有来得及记日志就宕机了,那么这个命令和相应的数据就有丢失的风险。

  2. AOF 虽然避免了对当前命令的阻塞,但可能会给下一个操作带来阻塞风险。这是因为,AOF 日志也是在主线程中执行的,如果在把日志文件写入磁盘时,磁盘写压力大,就会导致写盘很慢,进而导致后续的操作也无法执行了。

这两个风险都是和 AOF 写回磁盘的时机相关的。这也就意味着,如果我们能够控制一个写命令执行完后 AOF 日志写回磁盘的时机,这两个风险就解除了。

三种写回策略

其实,对于这个问题,AOF 机制给我们提供了三个选择,也就是 AOF 配置项 appendfsync 的三个可选值。

  • Always,同步写回:每个写命令执行完,立马同步地将日志写回磁盘;(“同步写回”可以做到基本不丢数据,但是它在每一个写命令后都有一个慢速的落盘操作,不可避免地会影响主线程性能;)

  • No,操作系统控制的写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,由操作系统决定何时将缓冲区内容写回磁盘。(虽然“操作系统控制的写回”在写完缓冲区后,就可以继续执行后续的命令,但是落盘的时机已经不在 Redis 手中了,只要 AOF 记录没有写回磁盘,一旦宕机对应的数据就丢失了;)

  • Everysec,每秒写回:每个写命令执行完,只是先把日志写到 AOF 文件的内存缓冲区,每隔一秒把缓冲区中的内容写入磁盘;(每秒写回”采用一秒写回一次的频率,避免了“同步写回”的性能开销,虽然减少了对系统性能的影响,但是如果发生宕机,上一秒内未落盘的命令操作仍然会丢失。所以,这只能算是,在避免影响主线程性能和避免数据丢失两者间取了个折中。)

到这里,我们就可以根据系统对高性能和高可靠性的要求,来选择使用哪种写回策略了。

AOF 重写机制

AOF 是以文件的形式在记录接收到的所有写命令。随着接收的写命令越来越多,AOF 文件会越来越大。这也就意味着,我们一定要小心 AOF 文件过大带来的性能问题。这里的“性能问题”,主要在于以下三个方面:

  1. 文件系统本身对文件大小有限制,无法保存过大的文件;
  2. 如果文件太大,之后再往里面追加命令记录的话,效率也会变低;
  3. 如果发生宕机,AOF 中记录的命令要一个个被重新执行,用于故障恢复,如果日志文件太大,整个恢复过程就会非常缓慢,这就会影响到 Redis 的正常使用。

AOF 重写机制就是来解决上述问题。简单来说,AOF 重写机制就是在重写时,Redis 根据数据库的现状创建一个新的 AOF 文件,也就是说,读取数据库中的所有键值对,然后对每一个键值对用一条命令记录它的写入。比如说,当读取了键值对“testkey”: “testvalue”之后,重写机制会记录 set testkey testvalue 这条命令。这样,当需要恢复时,可以重新执行该命令,实现“testkey”: “testvalue”的写入。

实际上,重写机制具有“多变一”功能。所谓的“多变一”,也就是说,旧日志文件中的多条命令,在重写后的新日志中变成了一条命令。(AOF 文件是以追加的方式,逐一记录接收到的写命令的。当一个键值对被多条写命令反复修改时,AOF 文件会记录相应的多条命令。但是,在重写的时候,是根据这个键值对当前的最新状态,为它生成对应的写入命令。这样一来,一个键值对在重写日志中只用一条命令就行了,而且,在日志恢复时,只用执行这条命令,就可以直接完成这个键值对的写入了。)

AOF 重写会阻塞吗?

和 AOF 日志由主线程写回不同,重写过程是由后台子进程 bgrewriteaof 来完成的,这也是为了避免阻塞主线程,导致数据库性能下降。我把重写的过程总结为一个拷贝,两处日志。

  • 一个拷贝就是指,每次执行重写时,主线程 fork 出后台的 bgrewriteaof 子进程。此时,fork 会把主线程的内存拷贝(这里实际拷贝内存页表(虚拟内存和物理内存的映射索引表)既可以理解为指针,否则会引起内存突然翻倍而剧增)一份给 bgrewriteaof 子进程,这里面就包含了数据库的最新数据。然后,bgrewriteaof 子进程就可以在不影响主线程的情况下,逐一把拷贝的数据写成操作,记入重写日志。

  • 两处日志因为主线程未阻塞,仍然可以处理新来的操作。此时,如果有写操作,第一处日志就是指正在使用的 AOF 日志,Redis 会把这个操作写到它的缓冲区。这样一来,即使宕机了,这个 AOF 日志的操作仍然是齐全的,可以用于恢复。而第二处日志,就是指新的 AOF 重写日志。这个操作也会被写到重写日志的缓冲区。这样,重写日志也不会丢失最新的操作。等到拷贝数据的所有操作记录重写完成后,重写日志记录的这些最新操作也会写入新的 AOF 文件,以保证数据库最新状态的记录。此时,我们就可以用新的 AOF 文件替代旧文件了。

总结来说,每次 AOF 重写时,Redis 会先执行一个内存拷贝,用于重写;然后,使用两个日志保证在重写过程中,新写入的数据不会丢失。而且,因为 Redis 采用额外的线程进行数据重写,所以,这个过程并不会阻塞主线程。

AOF重写触发时机

有两个配置项在控制AOF重写的触发时机:

  1. auto-aof-rewrite-min-size: 表示运行AOF重写时文件的最小大小,默认为64MB

  2. auto-aof-rewrite-percentage: 这个值的计算方法是:当前AOF文件大小和上一次重写后AOF文件大小的差值,再除以上一次重写后AOF文件大小。也就是当前AOF文件比上一次重写后AOF文件的增量大小,和上一次重写后AOF文件大小的比值。

总结

AOF工作原理:

1、Redis 执行 fork() ,现在同时拥有父进程和子进程。
2、子进程开始将新 AOF 文件的内容写入到临时文件。
3、对于所有新执行的写入命令,父进程一边将它们累积到一个内存缓存中,一边将这些改动追加到现有 AOF 文件的末尾,这样样即使在重写的中途发生停机,现有的 AOF 文件也还是安全的。
4、当子进程完成重写工作时,它给父进程发送一个信号,父进程在接收到信号之后,将内存缓存中的所有数据追加到新 AOF 文件的末尾。
5、搞定!现在 Redis 原子地用新文件替换旧文件,之后所有命令都会直接追加到新 AOF 文件的末尾。

AOF 重写过程中有没有其他潜在的阻塞风险?

  1. Redis 主线程 fork 创建 bgrewriteaof 子进程时,内核需要创建用于管理子进程的相关数据结构,这些数据结构在操作系统中通常叫作进程控制块(Process ControlBlock,简称为 PCB)。内核要把主线程的 PCB 内容拷贝给子进程。这个创建和拷贝过程由内核执行,是会阻塞主线程的。而且,在拷贝过程中,子进程要拷贝父进程的页表,这个过程的耗时和 Redis 实例的内存大小有关。如果 Redis 实例内存大,页表就会大,fork执行时间就会长,这就会给主线程带来阻塞风险。

  2. bgrewriteaof 子进程会和主线程共享内存。当主线程收到新写或修改的操作时,主线程会申请新的内存空间,用来保存新写或修改的数据,如果操作的是 bigkey,也就是数据量大的集合类型数据,那么,主线程会因为申请大空间而面临阻塞风险。因为操作系统在分配内存空间时,有查找和锁的开销,这就会导致阻塞。

内存快照

内存快照介绍

用 AOF 方法进行故障恢复的时候,需要逐一把操作日志都执行一遍。如果操作日志非常多,Redis 就会恢复得很缓慢,影响到正常使用。解决方案就是使用内存快照。

内存快照:就是指内存中的数据在某一个时刻的状态记录。对 Redis 来说,它实现类似照片记录效果的方式,就是把某一时刻的状态以文件的形式写到磁盘上,也就是快照。这样一来,即使宕机,快照文件也不会丢失,数据的可靠性也就得到了保证。这个快照文件就称为 RDB 文件,其中,RDB 就是 Redis DataBase 的缩写。

和 AOF 相比,RDB 记录的是某一时刻的数据,并不是操作,所以,在做数据恢复时,我们可以直接把 RDB 文件读入内存,很快地完成恢复。

Redis 的数据都在内存中,为了提供所有数据的可靠性保证,它执行的是全量快照,也就是说,把内存中的所有数据都记录到磁盘中,给内存的全量数据做快照,把它们全部写入磁盘也会花费很多时间。而且,全量数据越多,RDB 文件就越大,往磁盘上写数据的时间开销就越大。

对于 Redis 而言,它的单线程模型就决定了,我们要尽量避免所有会阻塞主线程的操作,所以,针对任何操作,我们都会提一个灵魂之问:“它会阻塞主线程吗?”RDB 文件的生成是否会阻塞主线程,这就关系到是否会降低 Redis 的性能。

Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave:

  • save:在主线程中执行,会导致阻塞。

  • bgsave:创建一个子进程,专门用于写入 RDB 文件,避免了主线程的阻塞,这也是Redis RDB 文件生成的默认配置。

这个时候,我们就可以通过 bgsave 命令来执行全量快照,这既提供了数据的可靠性保证,也避免了对 Redis 的性能影响。

快照时数据变更机制

我们在做快照时不希望数据“动”,也就是不能被修改。我们说可以使用bgsave异步保存快照,但是主线程的确没有阻塞,可以正常接收请求,但是,为了保证快照完整性,它只能处理读操作,因为不能修改正在执行快照的数据。为了快照而暂停写操作,肯定是不能接受的。所以这个时候,Redis 就会借助操作系统提供的写时复制技术(Copy-On-Write, COW),在执行快照的同时,正常处理写操作。

简单来说,bgsave 子进程是由主线程 fork 生成的,可以共享主线程的所有内存数据。bgsave 子进程运行后,开始读取主线程的内存数据,并把它们写入 RDB 文件。

此时,如果主线程对这些数据也都是读操作(例如图中的键值对 A),那么,主线程和bgsave 子进程相互不影响。但是,如果主线程要修改一块数据(例如图中的键值对 C),那么,这块数据就会被复制一份,生成该数据的副本。然后,bgsave 子进程会把这个副本数据写入 RDB 文件,而在这个过程中,主线程仍然可以直接修改原来的数据。

avatar

这既保证了快照的完整性,也允许主线程同时对数据进行修改,避免了对正常业务的影响。

写时复制原理:

avatar

快照频率

如果间隔时间越短,那么我们在某一时刻如果发生宕机了,因为上一时刻快照刚执行,丢失的数据也不会太多。但是,如果频繁地执行全量快照,也会带来两方面的开销。

  1. 频繁将全量数据写入磁盘,会给磁盘带来很大压力,多个快照竞争有限的磁盘带宽,前一个快照还没有做完,后一个又开始做了,容易造成恶性循环。

  2. bgsave 子进程需要通过 fork 操作从主线程创建出来。虽然,子进程在创建后不会再阻塞主线程,但是,fork 这个创建过程本身会阻塞主线程,而且主线程的内存越大,阻塞时间越长。如果频繁 fork 出 bgsave 子进程,这就会频繁阻塞主线程了。

那么,有什么其他好方法吗?

此时,我们可以做增量快照,所谓增量快照,就是指,做了一次全量快照后,后续的快照只对修改的数据进行快照记录,这样可以避免每次全量快照的开销。(这么做的前提是,我们需要记住哪些数据被修改了。你可不要小瞧这个“记住”功能,它需要我们使用额外的元数据信息去记录哪些数据被修改了,这会带来额外的空间开销问题。)所以,增量快照不是最优解。

Redis 4.0 中提出了一个混合使用 AOF 日志和内存快照的方法。简单来说,内存快照以一定的频率执行,在两次快照之间,使用 AOF 日志记录这期间的所有命令操作。这样一来,快照不用很频繁地执行,这就避免了频繁 fork 对主线程的影响。而且,AOF日志也只用记录两次快照间的操作,也就是说,不需要记录所有操作了,因此,就不会出现文件过大的情况了,也可以避免重写开销。

总结

这节,我们学习了 Redis 用于避免数据丢失的内存快照方法。这个方法的优势在于,可以快速恢复数据库,也就是只需要把 RDB 文件直接读入内存,这就避免了 AOF 需要顺序、逐一重新执行操作命令带来的低效性能问题。

不过,内存快照也有它的局限性。它拍的是一张内存的“大合影”,不可避免地会耗时耗力。虽然,Redis 设计了 bgsave 和写时复制方式,尽可能减少了内存快照对正常读写的影响,但是,频繁快照仍然是不太能接受的。而混合使用 RDB 和 AOF,正好可以取两者之长,避两者之短,以较小的性能开销保证数据可靠性和性能。

最后,关于 AOF 和 RDB 的选择问题,我想再给你提三点建议:

  1. 数据不能丢失时,内存快照和 AOF 的混合使用是一个很好的选择。

  2. 如果允许分钟级别的数据丢失,可以只使用 RDB。

  3. 如果只用 AOF,优先使用 everysec 的配置选项,因为它在可靠性和性能之间取了一个平衡。

如果有 100 个请求,80 个请求执行的是修改操作。在这个场景下,用RDB 做持久化有什么风险吗?

内存不足的风险:Redis fork 一个 bgsave 子进程进行 RDB 写入,如果主线程再接收到写操作,就会采用写时复制。写时复制需要给写操作的数据分配新的内存空间。本问题中写的比例为 80%,那么,在持久化过程中,为了保存 80% 写操作涉及的数据,写时复制机制会在实例内存中,为这些数据再分配新内存空间,分配的内存量相当于整个实例数据量的 80%。

主线程和子进程竞争使用 CPU 的风险:生成 RDB 的子进程需要 CPU 核运行,主线程本身也需要 CPU 核运行,而且,如果 Redis 还启用了后台线程,此时,主线程、子进程和后台线程都会竞争 CPU 资源。由于云主机只有 2 核 CPU,这就会影响到主线程处理请求的速度。

主从数据同步

主动模式概念

Redis 具有高可靠性的含义:一是数据尽量少丢失,二是服务尽量少中断。AOF 和 RDB 保证了前者,而对于后者,Redis 的做法就是增加副本冗余量,将一份数据同时保存在多个实例上。Redis 提供了主从库模式,以保证数据副本的一致,主从库之间采用的是读写分离的方式。

  • 读操作:主库、从库都可以接收;

  • 写操作:首先到主库执行,然后,主库将写操作同步给从库。

使用读写分离的好处是,不管是主库还是从库,都能接收客户端的写操作,那么,一个直接的问题就是:如果客户端对同一个数据(例如 k1)前后修改了三次,每一次的修改请求都发送到不同的实例上,在不同的实例上执行,那么,这个数据在这三个实例上的副本就不一致了(分别是 v1、v2 和 v3)。在读取这个数据的时候,就可能读取到旧的值。如果我们非要保持这个数据在三个实例上一致,就要涉及到加锁、实例间协商是否完成修改等一系列操作,但这会带来巨额的开销,当然是不太能接受的。

而主从库模式一旦采用了读写分离,所有数据的修改只会在主库上进行,不用协调三个实例。主库有了最新的数据后,会同步给从库,这样,主从库的数据就是一致的。

主从库第一次同步流程

  • 第一阶段是主从库间建立连接、协商同步的过程,主要是为全量复制做准备。在这一步,从库和主库建立起连接,并告诉主库即将进行同步,主库确认回复后,主从库间就可以开始同步了。(从库给主库发送 psync 命令,表示要进行数据同步,主库根据这个命令的参数来启动复制。psync 命令包含了主库的 runID 和复制进度 offset 两个参数。runID,是每个 Redis 实例启动时都会自动生成的一个随机 ID,用来唯一标记这个实例。offset,此时设为 -1,表示第一次复制。主库收到 psync 命令后,会用 FULLRESYNC 响应命令带上两个参数:主库 runID 和主库目前的复制进度 offset,返回给从库。从库收到响应后,会记录下这两个参数。主库会把当前所有的数据都复制给从库。)

  • 第二阶段,主库将所有数据同步给从库。从库收到数据后,在本地完成数据加载。这个过程依赖于内存快照生成的 RDB 文件。(主库执行 bgsave 命令,生成 RDB 文件,接着将文件发给从库。从库接收到RDB 文件后,会先清空当前数据库,然后加载 RDB 文件。在主库将数据同步给从库的过程中,主库不会被阻塞,仍然可以正常接收请求。为了保证主从库的数据一致性,主库会在内存中用专门的 replication buffer,记录RDB 文件生成后收到的所有写操作。)

  • 第三阶段,主库会把第二阶段执行过程中新收到的写命令,再发送给从库。具体的操作是,当主库完成 RDB 文件发送后,就会把此时 replication buffer 中的修改操作发给从库,从库再重新执行这些操作。这样一来,主从库就实现同步了。

avatar

主从级联模式

一次全量复制中,对于主库来说,需要完成两个耗时的操作:生成 RDB 文件和传输 RDB 文件。如果从库数量很多,而且都要和主库进行全量复制的话,就会导致主库忙于 fork 子进程生成 RDB 文件,进行数据全量同步。fork 这个操作会阻塞主线程处理正常请求,从而导致主库响应应用程序的请求速度变慢。此外,传输 RDB 文件也会占用主库的网络带宽,同样会给主库的资源使用带来压力。

我们可以通过主 - 从 - 从模式。我们可以通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上。我们可以通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上。

avatar

主从库间网络断开问题

到这里,我们了解了主从库间通过全量复制实现数据同步的过程,以及通过“主 -从 - 从”模式分担主库压力的方式。那么,一旦主从库完成了全量复制,它们之间就会一直维护一个网络连接,主库会通过这个连接将后续陆续收到的命令操作再同步给从库,这个过程也称为基于长连接的命令传播,可以避免频繁建立连接的开销。

如果网络连接断开怎么办?在 Redis 2.8 之前,如果主从库在命令传播时出现了网络闪断,那么,从库就会和主库重新进行一次全量复制,开销非常大。从 Redis 2.8 开始,网络断了之后,主从库会采用增量复制的方式继续同步。听名字大概就可以猜到它和全量复制的不同:全量复制是同步所有数据,而增量复制只会把主从库网络断连期间主库收到的命令,同步给从库。

当主从库断连后,主库会把断连期间收到的写操作命令,写入 replication buffer,同时也会把这些操作命令也写入 repl_backlog_buffer 这个缓冲区。repl_backlog_buffer 是一个环形缓冲区,主库会记录自己写到的位置,从库则会记录自己
已经读到的位置。

刚开始的时候,主库和从库的写读位置在一起,这算是它们的起始位置。随着主库不断接收新的写操作,它在缓冲区中的写位置会逐步偏离起始位置,我们通常用偏移量来衡量这个偏移距离的大小,对主库来说,对应的偏移量就是 master_repl_offset。主库接收的新
写操作越多,这个值就会越大。同样,从库在复制完写操作命令后,它在缓冲区中的读位置也开始逐步偏移刚才的起始位置,此时,从库已复制的偏移量 slave_repl_offset 也在不断增加。正常情况下,这两个偏移量基本相等。

主从库的连接恢复之后,从库首先会给主库发送 psync 命令,并把自己当前的slave_repl_offset 发给主库,主库会判断自己的 master_repl_offset 和 slave_repl_offset之间的差距。在网络断连阶段,主库可能会收到新的写操作命令,所以,一般来说,master_repl_offset会大于 slave_repl_offset。此时,主库只用把 master_repl_offset 和 slave_repl_offset之间的命令操作同步给从库就行。

因为 repl_backlog_buffer 是一个环形缓冲区,所以在缓冲区写满后,主库会继续写入,此时,就会覆盖掉之前写入的操作。如果从库的读取速度比较慢,就有可能导致从库还未读取的操作被主库新写的操作覆盖了,这会导致主从库间的数据不一致。(我们要想办法避免这一情况,一般而言,我们可以调整 repl_backlog_size 这个参数。这个参数和所需的缓冲空间大小有关。缓冲空间的计算公式是:缓冲空间大小 = 主库写入命令速度 * 操作大小 - 主从库间网络传输命令速度 * 操作大小。在实际应用中,考虑到可能存在一些突发的请求压力,我们通常需要把这个缓冲空间扩大一倍,即repl_backlog_size = 缓冲空间大小 * 2,这也就是 repl_backlog_size 的最终值。)

replication buffer 和 repl_backlog_buffer 的区别

replication buffer 是主从库在进行全量复制时,主库上用于和从库连接的客户端的 buffer,而 repl_backlog_buffer 是为了支持从库增量复制,主库上用于持续保存写操作的一块专用 buffer。

Redis 主从库在进行复制时,当主库要把全量复制期间的写操作命令发给从库时,主库会先创建一个客户端,用来连接从库,然后通过这个客户端,把写操作命令发给从库。在内存中,主库上的客户端就会对应一个 buffer,这个 buffer 就被称为 replication buffer。Redis 通过 client_buffer 配置项来控制这个 buffer 的大小。主库会给每个从库建立一个客户端,所以 replication buffer 不是共享的,而是每个从库都有一个对应的客户端。

repl_backlog_buffer 是一块专用 buffer,在 Redis 服务器启动后,开始一直接收写操作命令,这是所有从库共享的。主库和从库会各自记录自己的复制进度,所以,不同的从库\在进行恢复时,会把自己的复制进度(slave_repl_offset)发给主库,主库就可以和它独立同步。

小结

Redis 的主从库同步的基本原理,总结来说,有三种模式:全量复制、基于长连接的命令传播,以及增量复制。全量复制虽然耗时,但是对于从库来说,如果是第一次同步,全量复制是无法避免的,所以,我给你一个小建议:一个 Redis 实例的数据库不要太大,一个实例大小在几 GB 级别比较合适,这样可以减少 RDB 文件生成、传输和重新加载的开销。另外,为了避免多个从库同时和主库进行全量复制,给主库过大的同步压力,我们也可以采用“主 - 从 - 从”这一级联模式,来缓解主库的压力。

长连接复制是主从库正常运行后的常规同步阶段。在这个阶段中,主从库之间通过命令传播实现同步。不过,这期间如果遇到了网络断连,增量复制就派上用场了。我特别建议你留意一下 repl_backlog_size 这个配置参数。如果它配置得过小,在增量复制阶段,可能会导致从库的复制进度赶不上主库,进而导致从库重新进行全量复制。所以,通过调大这个参数,可以减少从库在网络断连时全量复制的风险。

主从库间的数据复制同步使用的是RDB 文件,前面我们学习过,AOF 记录的操作命令更全,相比于 RDB 丢失的数据更少。那么,为什么主从库间的复制不使用 AOF 呢?

  1. 相同数据下,AOF 文件比 RDB 更大,因此需要的网络带宽更多;

  2. 在恢复数据时,使用RDB更快。

  3. 如果使用AOF文件来同步相对来说丢的数据更少,但是不表示不丢数据。即也需要第三个阶段来保证数据的一致性。因此相对来说使用RDB开销更小些。

在主从切换过程中,客户端能否正常地进行请求操作呢?

从集群一般是采用读写分离模式,当主库故障后,客户端仍然可以把读请求发送给从库,让从库服务。但是,对于写请求操作,客户端就无法执行了。

如果想要应用程序不感知服务的中断,还需要哨兵或客户端再做些什么吗?

  1. 一方面,客户端需要能缓存应用发送的写请求。只要不是同步写操作 Redis 应用场景一般也没有同步写(由此引发的数据库缓存一致性的解决方案,是否那么绝对),写请求通常不会在应用程序的关键路径上,所以,客户端缓存写请求后,给应用程序返回一个确认就行。

  2. 另一方面,主从切换完成后,客户端要能和新主库重新建立连接,哨兵需要提供订阅频道,让客户端能够订阅到新主库的信息。同时,客户端也需要能主动和哨兵通信,询问新主库的信息。

哨兵机制

主从库集群模式下,如果从库发生故障了,客户端可以继续向主库或其他从库发送请求,进行相关的操作,但是如果主库发生故障了,那就直接会影响到从库的同步,因为从库没有相应的主库可以进行数据复制操作了。主库挂了就牵扯三个问题:

  1. 主库真的挂了吗?

  2. 该选择哪个从库作为主库?

  3. 怎么把新主库的相关信息通知给从库和客户端呢?

哨兵机制的基本流程

哨兵其实就是一个运行在特殊模式下的 Redis 进程,主从库实例运行的同时,它也在运行。哨兵主要负责的就是三个任务:监控、选主(选择主库)和通知。

监控

监控是指哨兵进程在运行时,周期性地给所有的主从库发送 PING 命令,检测它们是否仍然在线运行。如果从库没有在规定时间内响应哨兵的 PING 命令,哨兵就会把它标记为“下线状态”;同样,如果主库也没有在规定时间内响应哨兵的 PING 命令,哨兵就会判定主库下线,然后开始自动切换主库的流程。

哨兵对主库的下线判断有“主观下线”和“客观下线”两种。那么,为什么会存在两种判断呢?它们的区别和联系是什么呢?

哨兵进程会使用 PING 命令检测它自己和主、从库的网络连接情况,用来判断实例的状态。如果哨兵发现主库或从库对 PING 命令的响应超时了,那么,哨兵就会先把它标记为“主观下线”。这里面会存在误判的情况,误判,就是主库实际并没有下线,但是哨兵误以为它下线了。误判一般会发生在集群网络压力较大、网络拥塞,或者是主库本身压力较大的情况下。一旦哨兵判断主库下线了,就会开始选择新主库,并让从库和新主库进行数据同步,这个过程本身就会有开销(选新主库和主从同步),所以我们需要判断是否有判,以及减少误判。

哨兵机制通常会采用多实例组成的集群模式进行部署,这也被称为哨兵集群。引入多个哨兵实例一起来判断,就可以避免单个哨兵因为自身网络状况不好,而误判主库下线的情况。同时,多个哨兵的网络同时不稳定的概率较小,由它们一起做决策,误判率也能降低。所以我们通过多个哨兵一起判断,来描述主库下线是客观下线,“客观下线”的标准就是,当有 N 个哨兵实例时,最好要有 N/2 + 1 个实例判断主库为“主观下线”,才能最终判定主库为“客观下线”。这样一来,就可以减少误判的概率,也能避免误判带来的无谓的主从库切换。(如果想降低误判率,可以增加哨兵的个数)

选主

主库挂了以后,哨兵就需要从很多个从库里,按照一定的规则选择一个从库实例,把它作为新的主库。这一步完成后,现在的集群里就有了新主库。一般来说,我把哨兵选择新主库的过程称为“筛选 + 打分”。简单来说,我们在多个从库中,先按照一定的筛选条件,把不符合条件的从库去掉。然后,我们再按照一定的规则,给剩下的从库逐个打分,将得分最高的从库选为新主库,如下图:

avatar

  • 筛选
  1. 要检查从库的当前在线状态,还要判断它之前的网络连接状态。
  • 打分
  1. 优先级最高的从库得分高。(用户可以通过 slave-priority 配置项,给不同的从库设置不同优先级。比如给内存大的实例设置一个高优先级)

  2. 和旧主库同步程度最接近的从库得分高。(主从库同步时有个命令传播的过程。在这个过程中,主库会用master_repl_offset 记录当前的最新写操作在 repl_backlog_buffer 中的位置,而从库会用 slave_repl_offset 这个值记录当前的复制进度。从库的 slave_repl_offset 值最大的说明最接近原来的主库同步位置,则得分最高)

  3. ID 号小的从库得分高。(每个实例都会有一个 ID,这个 ID 就类似于这里的从库的编号。目前,Redis 在选主库时,有一个默认的规定:在优先级和复制进度都相同的情况下,ID 号最小的从库得分最高,会被选为新主库。)

通知

哨兵会执行最后一个任务:通知。在执行通知任务时,哨兵会把新主库的连接信息发给其他从库,让它们执行 replicaof 命令,和新主库建立连接,并进行数据复制。同时,哨兵会把新主库的连接信息通知给客户端,让它们把请求操作发到新主库上。

哨兵集群

多个实例组成的哨兵集群,即使有哨兵实例出现故障挂掉了,其他哨兵还能继续协作完成主从库切换的工作,包括判定主库是不是处于下线状态,选择新主库,以及通知从库和客户端。在配置哨兵的信息时,我们只需要设置主库的 IP 和端口,并没有配置其他哨兵的连接信息,就可以组成集群,这是什么原理?

基于 pub/sub 机制的哨兵集群组成

哨兵实例之间可以相互发现,要归功于 Redis 提供的 pub/sub 机制,也就是发布 / 订阅机制。哨兵只要和主库建立起了连接,就可以在主库上发布消息了,比如说发布它自己的连接信息(IP 和端口)。同时,它也可以从主库上订阅消息,获得其他哨兵发布的连接信息。当多个哨兵实例都在主库上做了发布和订阅操作后,它们之间就能知道彼此的 IP 地址和端口。

avatar

哨兵与从库建立连接

这是由哨兵向主库发送 INFO 命令来完成的。就像下图所示,哨兵 2 给主库发送 INFO 命令,主库接受到这个命令后,就会把从库列表返回给哨兵。接着,哨兵就可以根据从库列表中的连接信息,和每个从库建立连接,并在这个连接上持续地对从库进行监控。哨兵 1 和 3 可以通过相同的方法和从库建立连接。

avatar

通过 pub/sub 机制,哨兵之间可以组成集群,同时,哨兵又通过 INFO 命令,获得了从库连接信息,也能和从库建立连接,并进行监控了。

基于 pub/sub 机制的客户端事件通知

哨兵不能只和主、从库连接。因为,主从库切换后,客户端也需要知道新主库的连接信息,才能向新主库发送请求操作。所以,哨兵还需要完成把新主库的信息告诉客户端这个任务。

从本质上说,哨兵就是一个运行在特定模式下的 Redis 实例,只不过它并不服务请求操作,只是完成监控、选主和通知的任务。所以,每个哨兵实例也提供 pub/sub 机制,客户端可以从哨兵订阅消息。哨兵提供的消息订阅频道有很多,不同频道包含了主从库切换过程中的不同关键事件。(包括:主库下线各种事件、从库重新配置等事件、新主库切换事件)

具体的操作步骤是,客户端读取哨兵的配置文件后,可以获得哨兵的地址和端口,和哨兵建立网络连接。然后,我们可以在客户端执行订阅命令,来获取不同的事件消息。

由哪个哨兵执行主从切换?

确定由哪个哨兵执行主从切换的过程,和主库“客观下线”的判断过程类似,也是一个“投票仲裁”的过程。任何一个实例只要自身判断主库“主观下线”后,就会给其他实例发送 is-master-downby-addr 命令。接着,其他实例会根据自己和主库的连接情况,做出 Y 或 N 的响应,Y 相当于赞成票,N 相当于反对票。

一个哨兵获得了仲裁所需的赞成票数后,就可以标记主库为“客观下线”。这个所需的赞成票数是通过哨兵配置文件中的 quorum 配置项设定的。例如,现在有 5 个哨兵,quorum 配置的是 3,那么,一个哨兵需要 3 张赞成票,就可以标记主库为“客观下线”了。这 3 张赞成票包括哨兵自己的一张赞成票和另外两个哨兵的赞成票。此时,这个哨兵就可以再给其他哨兵发送命令,表明希望由自己来执行主从切换,并让所有其他哨兵进行投票。这个投票过程称为“Leader 选举”。因为最终执行主从切换的哨兵称为 Leader,投票过程就是确定 Leader。在投票过程中,任何一个想成为 Leader 的哨兵,要满足两个条件:第一,拿到半数以上的赞成票;第二,拿到的票数同时还需要大于等于哨兵配置文件中的 quorum 值。

小结

通常,我们在解决一个系统问题的时候,会引入一个新机制,或者设计一层新功能,就像我们在这两节课学习的内容:为了实现主从切换,我们引入了哨兵;为了避免单个哨兵故障后无法进行主从切换,以及为了减少误判率,又引入了哨兵集群;哨兵集群又需要有一些机制来支撑它的正常运行。

哨兵集群的这些关键机制,包括:

  • 基于 pub/sub 机制的哨兵集群组成过程;

  • 基于 INFO 命令的从库列表,这可以帮助哨兵和从库建立连接;

  • 基于哨兵自身的 pub/sub 功能,这实现了客户端和哨兵之间的事件通知。

对于主从切换,当然不是哪个哨兵想执行就可以执行的,否则就乱套了。所以,这就需要哨兵集群在判断了主库“客观下线”后,经过投票仲裁,选举一个 Leader 出来,由它负责实际的主从切换,即由它来完成新主库的选择以及通知从库与客户端。

最后,我想再给你分享一个经验:要保证所有哨兵实例的配置是一致的,尤其是主观下线的判断值 down-after-milliseconds。我们曾经就踩过一个“坑”。当时,在我们的项目中,因为这个值在不同的哨兵实例上配置不一致,导致哨兵集群一直没有对有故障的主库形成共识,也就没有及时切换主库,最终的结果就是集群服务不稳定。所以,你一定不要忽略这条看似简单的经验。

哨兵实例是不是越多越好呢?如果同时调大 down-after-milliseconds 值,对减少误判是不是也有好处?

哨兵实例越多,误判率会越低,但是在判定主库下线和选举 Leader 时,实例需要拿到的赞成票数也越多,等待所有哨兵投完票的时间可能也会相应增加,主从库切换的时间也会变长,客户端容易堆积较多的请求操作,可能会导致客户端请求溢出,从而造成请求丢失。如果业务层对 Redis 的操作有响应时间要求,就可能会因为新主库一直没有选定,新操作无法执行而发生超时报警。

调大 down-after-milliseconds 后,可能会导致这样的情况:主库实际已经发生故障了,但是哨兵过了很长时间才判断出来,这就会影响到 Redis 对业务的可用性。

切片集群

在使用 RDB 进行持久化时,Redis 会 fork 子进程来完成,fork 操作的用时和 Redis 的数据量是正相关的,而 fork 在执行时会阻塞主线程。数据量越大,fork 操作造成的主线程阻塞的时间越长。所以,在使用 RDB 对 25GB 的数据进行持久化时,数据量较大,后台运行的子进程在 fork 创建时阻塞了主线程,于是就导致Redis 响应变慢了。(所以,当我们的数据量非常大时,一味的扩展机器配置,不是好的选择)

切片集群,也叫分片集群,就是指启动多个 Redis 实例组成一个集群,然后按照一定的规则,把收到的数据划分成多份,每一份用一个实例来保存。回到我们刚刚的场景中,如果把 25GB 的数据平均分成 5 份(当然,也可以不做均分),使用 5 个实例来保存,每个实例只需要保存 5GB 数据。

如何保存更多数据?

纵向扩展(scale up)和横向扩展(scale out):

  • 纵向扩展:升级单个 Redis 实例的资源配置,包括增加内存容量、增加磁盘容量、使用更高配置的 CPU。例如原来的实例内存是 8GB,硬盘是 50GB,纵向扩展后,内存增加到 24GB,磁盘增加到 150GB。()

  • 横向扩展:横向增加当前 Redis 实例的个数,就像下图中,原来使用 1 个 8GB 内存、50GB 磁盘的实例,现在使用三个相同配置的实例。

纵向扩展的好处是,实施起来简单、直接。不过,这个方案也面临两个潜在的问题:

  1. 当使用 RDB 对数据进行持久化时,如果数据量增加,需要的内存也会增加,主线程 fork 子进程时就可能会阻塞(比如刚刚的例子中的情况)。不过,如果你不要求持久化保存 Redis 数据,那么,纵向扩展会是一个不错的选择。

  2. 纵向扩展会受到硬件和成本的限制。这很容易理解,毕竟,把内存从 32GB 扩展到 64GB 还算容易,但是,要想扩充到 1TB,就会面临硬件容量和成本上的限制了。

横向扩展:一个扩展性更好的方案。这是因为,要想保存更多的数据,采用这种方案的话,只用增加 Redis 的实例个数就行了,不用担心单个实例的硬件和成本限制。在面向百万、千万级别的用户规模时,横向扩展的 Redis 切片集群会是一个非常好的选择。

数据切片和实例的对应分布关系

使用数据切片我们需要解决两个问题:

  1. 数据切片后,在多个实例之间如何分布?
  2. 客户端怎么确定想要访问的数据在哪个实例上?

Redis Cluster 方案采用哈希槽(Hash Slot,接下来我会直接称之为 Slot),来处理数据和实例之间的映射关系。在 Redis Cluster 方案中,一个切片集群共有 16384个哈希槽,这些哈希槽类似于数据分区,每个键值对都会根据它的 key,被映射到一个哈希槽中。具体的映射过程分为两大步:首先根据键值对的 key,按照CRC16 算法计算一个 16 bit的值;然后,再用这个 16bit 值对 16384 取模,得到 0~16383 范围内的模数,每个模数代表一个相应编号的哈希槽。

我们在部署 Redis Cluster 方案时,可以使用 cluster create 命令创建集群,此时,Redis会自动把这些槽平均分布在集群实例上。例如,如果集群中有 N 个实例,那么,每个实例上的槽个数为 16384/N 个。当然, 我们也可以使用 cluster meet 命令手动建立实例间的连接,形成集群,再使用cluster addslots 命令,指定每个实例上的哈希槽个数。(例如我们给内存大的实例分配更多的槽,内存小的分配相对少的槽)在手动分配哈希槽时,需要把 16384 个槽都分配完,否则Redis 集群无法正常工作。

客户端如何定位数据?

在定位键值对数据时,它所处的哈希槽是可以通过计算得到的,这个计算可以在客户端发送请求时来执行。但是,要进一步定位到实例,还需要知道哈希槽分布在哪个实例上。Redis 实例会把自己的哈希槽信息发给和它相连接的其它实例,来完成哈希槽分配信息的扩散。当实例之间相互连接后,每个实例就有所有哈希槽的映射关系了。客户端收到哈希槽信息后,会把哈希槽信息缓存在本地。当客户端请求键值对时,会先计算键所对应的哈希槽,然后就可以给相应的实例发送请求了。

在集群中,实例和哈希槽的对应关系并不是一成不变的,最常见的变化有两个:

  1. 在集群中,实例有新增或删除,Redis 需要重新分配哈希槽;
  2. 为了负载均衡,Redis 需要把哈希槽在所有实例上重新分布一遍。

此时,实例之间还可以通过相互传递消息,获得最新的哈希槽分配信息,但是,客户端是无法主动感知这些变化的。这就会导致,它缓存的分配信息和最新的分配信息就不一致了,那该怎么办呢?

Redis Cluster 方案提供了一种重定向机制,所谓的“重定向”,就是指,客户端给一个实例发送数据读写操作时,这个实例上并没有相应的数据,客户端要再给一个新实例发送操作命令。

当客户端把一个键值对的操作请求发给一个实例时,如果这个实例上并没有这个键值对映射的哈希槽,那么,这个实例就会给客户端返回下面的 MOVED 命令响应结果,这个结果中就包含了新实例的访问地址。如下:

1
2
GET hello:key
(error) MOVED 13320 172.16.19.5:6379

如果两个实例的数据还正在迁徙中,还有部分数据没有迁徙,在这种迁移部分完成的情况下,客户端就会收到一条 ASK 报错信息,如下所示:

1
2
GET hello:key
(error) ASK 13320 172.16.19.5:6379

ASK 命令表示两层含义:第一,表明 Slot 数据还在迁移中;第二,ASK 命令把客户端所请求数据的最新实例地址返回给客户端。和 MOVED 命令不同,ASK 命令并不会更新客户端缓存的哈希槽分配信息。所以,在上图中,如果客户端再次请求 Slot 2 中的数据,它还是会给实例 2 发送请求。这也就是说,ASK 命令的作用只是让客户端能给新实例发送一次请求,而不像 MOVED 命令那样,会更改本地缓存,让后续所有命令都发往新实例。

总结

在应对数据量扩容时,虽然增加内存这种纵向扩展的方法简单直接,但是会造成数据库的内存过大,导致性能变慢。Redis 切片集群提供了横向扩展的模式,也就是使用多个实例,并给每个实例配置一定数量的哈希槽,数据可以通过键的哈希值映射到哈希槽,再通过哈希槽分散保存到不同的实例上。这样做的好处是扩展性好,不管有多少数据,切片集群都能应对。

另外,集群的实例增减,或者是为了实现负载均衡而进行的数据重新分布,会导致哈希槽和实例的映射关系发生变化,客户端发送请求时,会收到命令执行报错信息。了解了MOVED 和 ASK 命令,你就不会为这类报错而头疼了。

在 Redis 3.0 之前,Redis 官方并没有提供切片集群方案,但是,其实当时业界已经有了一些切片集群的方案,例如基于客户端分区的 ShardedJedis,基于代理的Codis、Twemproxy 等。这些方案的应用早于 Redis Cluster 方案,在支撑的集群实例规模、集群稳定性、客户端友好性方面也都有着各自的优势。

最后更新: 2021年04月01日 14:02

原始链接: https://jjw-story.github.io/2021/03/01/Redis-基础/

× 请我吃糖~
打赏二维码