Flink基本组件栈

Flink基本组件栈如下图:

avatar

Flink的架构体系同样也遵行分层架构设计的理念,基本上分为三层,API&Libraries层、Runtine核心层以及物理部署层。

  • API&Libraries层:提供了支撑流计算和批计算的接口,同时在此基础之上抽象出不同的应用类型的组件库。

  • Runtime 核心层:负责对上层不同接口提供基础服务,支持分布式Stream作业的执行、JobGraph到ExecutionGraph 的映射转换、任务调度等,将DataStream和DataSet转成统一的可执行的Task Operator.

  • 物理部署层:Flink 支持多种部署模式,本机,集群(Standalone/YARN)、云(GCE/EC2)、Kubenetes。

Flink运行时组件

Flink 运行时架构主要包括四个不同的组件,它们会在运行流处理应用程序时协同工作:作业管理器(JobManager)、资源管理器(ResourceManager)、任务管理器(TaskManager),以及分发器(Dispatcher)。因为 Flink 是用 Java 和 Scala 实现的,所以所有组件都会运行在Java 虚拟机上。具体如如下图:

avatar

作业管理器(JobManager)

控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个不同的JobManager 所控制执行。

  • JobManager 会先接收到要执行的应用程序,这个应用程序会包括:作业图(JobGraph)、逻辑数据流图(logical dataflow graph)和打包了所有的类、库和其它资源的JAR包。

  • JobManager 会把JobGraph转换成一个物理层面的数据流图,这个图被叫做“执行图”(ExecutionGraph),包含了所有可以并发执行的任务。

  • JobManager 会向资源管理器(ResourceManager)请求执行任务必要的资源,也就是任务管理器(TaskManager)上的插槽(slot)。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的TaskManager上。而在运行过程中,JobManager会负责所有需要中央协调的操作,比如说检查点(checkpoints)的协调。

任务管理器(TaskManager)

  • Flink中的工作进程。通常在Flink中会有多个TaskManager运行,每一个TaskManager都包含了一定数量的插槽(slots)。插槽的数量限制了TaskManager能够执行的任务数量。

  • 启动之后,TaskManager会向资源管理器注册它的插槽;收到资源管理器的指令后,TaskManager就会将一个或者多个插槽提供给JobManager调用。JobManager就可以向插槽分配任务(tasks)来执行了。

  • 在执行过程中,一个TaskManager可以跟其它运行同一应用程序的TaskManager交换数据。

资源管理器(ResourceManager)

  • 主要负责管理任务管理器(TaskManager)的插槽(slot),TaskManger 插槽是Flink中定义的处理资源单元。

  • Flink为不同的环境和资源管理工具提供了不同资源管理器,比如YARN、Mesos、K8s,以及standalone部署。

  • 当JobManager申请插槽资源时,ResourceManager会将有空闲插槽的TaskManager分配给JobManager。如果ResourceManager没有足够的插槽来满足JobManager的请求,它还可以向资源提供平台发起会话,以提供启动TaskManager进程的容器。

分发器(Dispatcher)

  • 可以跨作业运行,它为应用提交提供了REST接口。

  • 当一个应用被提交执行时,分发器就会启动并将应用移交给一个JobManager。

  • Dispatcher也会启动一个Web UI,用来方便地展示和监控作业执行的信息。

  • Dispatcher在架构中可能并不是必需的,这取决于应用提交运行的方式。

Flink任务提交流程

标准任务提交流程

标准的任务提交流程如下图所示:

avatar

上图是从一个较为高层级的视角,来看应用中各组件的交互协作。如果部署的集群环境不同(例如 YARN,Mesos,Kubernetes,standalone 等),其中一些步骤可以被省略,或是有些组件会运行在同一个 JVM 进程中。

注意:Standalone 模式提交时,4、5、6步骤是在Flink集群启动时就完成好了。其他如yarn模式启动,4、5、6步骤是按上述流程进行的。

YARN模式任务提交流程

![avatar]/images/blogs/flink/task-submit-yarn.png)

  1. Flink任务提交后,Client向HDFS上传Flink的Jar包和配置,

  2. 之后向Yarn ResourceManager提交任务,

  3. ResourceManager分配Container资源并通知对应的NodeManager启动ApplicationMaster,

  4. ApplicationMaster启动后加载Flink的Jar包和配置构建环境,然后启动JobManager,

  5. 之后ApplicationMaster向ResourceManager申请资源启动TaskManager,

  6. ResourceManager分配Container资源后,由ApplicationMaster通知资源所在节点的NodeManager启动TaskManager,

  7. NodeManager加载Flink的Jar包和配置构建环境并启动TaskManager,

  8. TaskManager启动后向JobManager发送心跳包,并等待JobManager向其分配任务。

Flink任务调度原理

avatar

客户端不是运行时和程序执行的一部分,但它是任务执行的起点。JobClient负责接受用户的程序代码,用于准备并发送dataflow(JobGraph)给 Master(JobManager),然后,客户端断开连接或者维持连接以等待接收计算结果。

当Flink集群启动后,首先会启动一个JobManger和一个或多个的TaskManager。由 Client 提交任务给 JobManager,JobManager 再调度任务到各个TaskManager 去执行,然后 TaskManager 将心跳和统计信息汇报给 JobManager。TaskManager 之间以流的形式进行数据的传输。上述三者均为独立的 JVM 进程。

Program Code 我们编写的Flink应用程序代码。

Client 为提交 Job 的客户端,可以是运行在任何机器上(与 JobManager 环境连通即可)。提交 Job 后,Client 可以结束进程(Streaming 的任务),也可以不
结束并等待结果返回。

JobManager 主要负责调度Job并协调Task做checkpoint,职责上很像Storm 的 Nimbus。从 Client 处接收到 Job 和 JAR 包等资源后,会生成优化后的执行计划,并以 Task 的单元调度到各个 TaskManager 去执行。

TaskManager 从JobManager处接收需要部署的Task。TaskManager是在JVM中一个或多个线程中执行任务的工作节点。任务执行的并行性由每个TaskManager上可用的任务槽决定。每个任务代表分配给任务槽的一组资源。例如:如果TaskManager有四个插槽,那么它将为每个插槽分配25%的内存。可以在任务槽中运行一个或多个线程。同一插槽中的线程共享相同的JVM。同一JVM中的任务共享TCP连接和心跳信息。TaskManager的一个Slot代表一个可用线程,该线程具有固定的内存,注意Slot只对内存隔离,没有对CPU隔离。

默认情况下,Flink允许子任务共享Slot,即使它们是不同的task的subtask,只要他们来自相同的job。这种共享可以有更好的资源利用率。

并行度(Parallelism)

Flink 程序的执行具有并行、分布式的特性。在执行过程中,一个流(stream)包含一个或多个分区(stream partition),而每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中彼此互不依赖地执行。

一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。一般情况下,一个流程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。

avatar

TaskManger 与 Slots

Flink 中每一个 worker(TaskManager)都是一个 JVM 进程,它可能会在独立的线程上执行一个或多个 subtask。为了控制一个 worker 能接收多少个 task,worker 通过 task slot 来进行控制(一个 worker 至少有一个 task slot)。

每个 task slot 表示 TaskManager 拥有资源的一个固定大小的子集。假如一个TaskManager 有三个 slot,那么它会将其管理的内存分成三份给各个 slot。资源 slot化意味着一个 subtask 将不需要跟来自其他 job 的 subtask 竞争被管理的内存,取而
代之的是它将拥有一定数量的内存储备。需要注意的是,这里不会涉及到 CPU 的隔离,slot 目前仅仅用来隔离 task 的受管理的内存。

通过调整 task slot 的数量,允许用户定义 subtask 之间如何互相隔离。如果一个TaskManager 一个 slot,那将意味着每个 task group 运行在独立的 JVM 中(该 JVM可能是通过一个特定的容器启动的),而一个 TaskManager 多个 slot 意味着更多的subtask 可以共享同一个 JVM。而在同一个 JVM 进程中的 task 将共享 TCP 连接(基于多路复用)和心跳消息。它们也可能共享数据集和数据结构,因此这减少了每个task 的负载。

avatar

默认情况下,Flink 允许子任务共享 slot,即使它们是不同任务的子任务(前提是它们来自同一个 job)。 这样的结果是,一个 slot 可以保存作业的整个管道。如下图所示:

avatar

Task Slot 是静态的概念,是指 TaskManager 具有的并发执行能力,可以通过参数 taskmanager.numberOfTaskSlots 进行配置;而并行度 parallelism 是动态概念,即 TaskManager 运行程序时实际使用的并发能力,可以通过参数 parallelism.default进行配置。

也就是说,假设一共有 3 个 TaskManager,每一个 TaskManager 中的分配 3 个TaskSlot,也就是每个 TaskManager 可以接收 3 个 task,一共 9 个 TaskSlot,如果我们设置 parallelism.default=1,即运行程序默认的并行度为 1,9 个 TaskSlot 只用了 1个,有 8 个空闲,因此,设置合适的并行度才能提高效率。

并行子任务分配利用如下图:

avatar

子任务分配及配置级别优先度示例:

avatar

avatar

程序与数据流(DataFlow)

avatar

所有的 Flink 程序都是由三部分组成的: Source 、Transformation 和 Sink。Source 负责读取数据源,Transformation 利用各种算子进行处理加工,Sink 负责输出。

在运行时,Flink 上运行的程序会被映射成“逻辑数据流”(dataflows),它包含了这三部分。每一个 dataflow 以一个或多个 sources 开始以一个或多个 sinks 结束。dataflow 类似于任意的有向无环图(DAG)。在大部分情况下,程序中的转换运算(transformations)跟 dataflow 中的算子(operator)是一一对应的关系,但有时候,一个 transformation 可能对应多个 operator。

执行图(ExecutionGraph)

由 Flink 程序直接映射成的数据流图是 StreamGraph,也被称为逻辑流图,因为它们表示的是计算逻辑的高级视图。为了执行一个流处理程序,Flink 需要将逻辑流图转换为物理数据流图(也叫执行图),详细说明程序的执行方式。

Flink 中的执行图可以分成四层:StreamGraph -> JobGraph -> ExecutionGraph ->物理执行图。

StreamGraph:是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。

JobGraph:StreamGraph 经过优化后生成了 JobGraph,提交给 JobManager 的数据结构。主要的优化为,将多个符合条件的节点 chain 在一起作为一个节点,这样可以减少数据在节点之间流动所需要的序列化/反序列化/传输消耗。

ExecutionGraph : JobManager 根据 JobGraph 生成 ExecutionGraph。ExecutionGraph 是 JobGraph 的并行化版本,是调度层最核心的数据结构。

物理执行图:JobManager 根据 ExecutionGraph 对 Job 进行调度后,在各个TaskManager 上部署 Task 后形成的“图”,并不是一个具体的数据结构。

avatar

数据传输形式

一个程序中,不同的算子可能具有不同的并行度。

  • 算子之间传输数据的形式可以是 one-to-one (forwarding) 的模式也可以是redistributing 的模式,具体是哪一种形式,取决于算子的种类。

  • One-to-one:stream维护着分区以及元素的顺序(比如source和map之间)。这意味着map 算子的子任务看到的元素的个数以及顺序跟 source 算子的子任务生产的元素的个数、顺序相同。map、fliter、flatMap等算子都是one-to-one的对应关系。类似于 spark 中的窄依赖

  • Redistributing:stream的分区会发生改变。每一个算子的子任务依据所选择的transformation发送数据到不同的目标任务。例如,keyBy 基于 hashCode 重分区、而 broadcast 和 rebalance 会随机重新分区,这些算子都会引起redistribute过程,而 redistribute 过程就类似于 Spark 中的 shuffle 过程。类似于 spark 中的宽依赖

任务链(Operator Chains)

相同并行度的 one to one 操作,Flink 这样相连的算子链接在一起形成一个 task,原来的算子成为里面的一部分。将算子链接成 task 是非常有效的优化:它能减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。链接的行为可以在编程 API 中进行指定。

avatar

最后更新: 2021年02月05日 17:09

原始链接: https://jjw-story.github.io/2021/02/05/Flink运行时架构/

× 请我吃糖~
打赏二维码